Laibetherny 11/20115 FR Alen 13/2/15

QA Reviewed by:

	SCIENCE APPLICA Organic Data Re	TIONS INTERNAT view Checklist - S	IONAL CORPO Standard Valida	RATION tion
Project:	Harley-Davidson			Page 1 of 11
SDG No:	180-47935-1	Analysis:	VOC	Or Control of the Con
		Method:	8260 LL	
Laboratory:	TestAmerica Pittsburgh	Matrix:	Water	
data have been si	ackage has been reviewed and tummarized. The general criterianination of the following: Case Narrative Analytical Holding Times	used to assess the an Analytical Surrogate Internal Standard Pe	alytical integrityof th Recoveries rformance	nce performance e data were
	Sample Preservation Method Calibration Method and Project Blanks	MS/MSD Recoveries LCS Recoveries Re-analysis and Sec		
Project Specific Q	A/QC or contract requirements n		•	his procedure.
Overall Remarks	: No najar 75	sugs Soc	affect.	Acombra
		-		
Definition of Qualif	"U", not detected at the associate "UJ", not detected and associate "J", associated value estimated "R", associated value unusable "=", compound properly identified	ed value estimated or analyte identity unfo		11/13/15

Date:

	Page 2 of 11
I. Case Narrat	ive
Verify direct stat	ements made within the Laboratory Case Narrative (note discrepancies).
Remarks:	No major 1554a5
II. Re-analysis	s and Secondary Dilutions
Verify that re-an	nalysis and secondary dilutions were performed and reported as necessary. Determine ults to report.
Remarks:	<u>oh</u>

III. Holding Times

VOC - Waters - unpreserved: aromatic within 7 days, non-aromatic within 14 days of sample collection

VOC - Waters - preserved: aromatic and non-aromatic within 14 days of sample collection

VOC - Soils - preserve or analyze within 48 hours of sample collection; analyze within 14 days of preservation

SVOC, Pest., PCB - Waters - extract within 7 days of sample collection, analyze within 40 days of extraction SVOC, Pest., PCB - Soils - extract within 14 days of sample collection, analyze within 40 days of extraction

Deviations:

Seviations.										
	VOC			SVOC		Pest/PCB				
Sample #	Date	Date	Date	Date	Date	Date	Date	Date		
	Collected	Analyzed	Collected	Extracted	Analyzed	Collected	Extracted	Analyzed		
					_			<u></u>		
-										
-										
								-		
							i			
										
		<u></u>								

1. 1	t nolaing ti	imes are	exceeded,	all results	are	qualified	as	estimated	(J/l	IJ)
------	--------------	----------	-----------	-------------	-----	-----------	----	-----------	------	----	---

2. If holding times are exceeded by more than 2X,	reviewer may qualify no	n-detected results a	s unusable (R)
---	-------------------------	----------------------	----------------

Remarks:	No 135465	

IV. System Monitoring Compounds (SMC) Recoveries (VOC, SVOC, Pesticides, PCBs)

List SMC compounds with unacceptable recoveries:

Deviations:

Deviations.		VOC	_	D/N	SVOC		Anid	SVOC	ında	Pest	PCB
Sample #	TOL	BFB	DCE	NBZ	B/N Compounds NBZ FBP TPH I		Acid Compounds PHL 2FP TBP			TCX	DCB
	TOL	DFB	DCL	NDZ	1 01	11 11	11112	211		10/	
		 					_				
						_					
											_
	1										
		1									
	 				 			 	 		
QC						-				,	
Limits											

- 1. If any SMC recovery is <10%, qualify all positive results in associated fractions as estimated (J)
- 2. If any SMC recovery is <10%, qualify all nondetects in associated fractions as unusable (R)
- 3. If SMC recoveries fall between 10% and the lower recovery limit, qualify results as estimated (J/UJ)
- 4. If SMC recoveries fall above the upper recovery limit, qualify positive results as estimated (J)
- 5. Use professional judgement to qualify Pest/PCB results when SMC recoveries are >10%
- 6. Use professional judgement to qualify results when SMC recoveries have been diluted out of spec.
- 7. For SVOC, qualification of the data is required only when 2 or more SMC per fraction are not within control limits
- 8. Note: SMC formerly known as surrogates.

Remarks:	No issues							

V. Internal Standards Performance (VOC, SVOC)

VOC internal standard area counts within -50% to +100% of standard (Y/N) VOC internal standard retention times within ± 30 seconds of standard (Y/N)

SVOC internal standard area counts within -50% to +100% of standard (Y/N) SVOC internal standard retention times within + 30 seconds of standard (Y/N)

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Sample #	Affected	Counts	Range	'``	Value
					1
					+
	1.				-
11					
				 	+
				 	 -
					
-					
			<u> </u>		

Actions:

- 1. If area counts are outside limits, qualify positive results associated with that IS as estimated (J)
- 2. Non-detected compounds quantitated using an IS area count >100% should not be qualified
- 3. Non-detected compounds quantitated using an IS area count <50%, qualify as estimated (UJ)
- 4. If extremely low area counts are reported (<50% of the lower limit), qualify non-detects as unusable (R)
- 5. If an IS retention time varies more than 30 seconds, review the chromatographic profile for shifts and irregularities. Use professional judgement to qualify the data estimated (J/UJ) or unusable (R)

10- 1

Remarks:	NO 135 NES					

			Pa	age 6 of 11
VI. Blanks				
to analyze VO	Cs and SVOCs Yes		each 12 hour period on each of documented contamination be	
Laboratory I	Method Blanks:			
Date:	Lab ID#	Fraction	Compound	Conc. (ppb)
Associated	Project Blanke /e ~	, equipment rinsates	, trip blanks. etc.)	
Date	Lab ID #	Fraction	Compound	Conc. (ppb)
Remarks		No issu	.65	
Remarks:		No issu	.65	
Remarks:		No issu	.65	

VI. Blanks (continued)

Calculate action levels based on 10X the highest blank concentration of "common laboratory solvents", VOCs (methylene chloride, acetone, toluene, 2-butanone, cyclohexane) or SVOCs (phthalates), and 5X the highest blank concentration for all other VOC, SVOC, Pesticides, and PCB compounds. Sample weights, volumes, and dilution factors must be taken into account when applying the 5X and 10X criteria. This allows the total amount of contaminant present to be considered.

ı	h	_		i,	4	io	-	_	
ı	ш	е	v	12	ш	ıo	n	e	-

	Maximum Conc.	Action Level (ppb)	Samples Affected
ompound	Detected, (ppb)		·
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			
			
		 	
		·	

- 1. If compound results exceed the action levels, the data are not qualified
- 2. If compound results are below the required reporting level, report results as non-detect (U) at the reporting level
- 3. If the compound is detected above the reporting level, but below the action level, qualify as not-detected (U)
- 4. If gross contamination exists in blanks (i.e.,, saturated peaks by GC/ MS), all affected compounds in the associated samles should be qualifed as unusable (R) due to interference.
- 5. If blanks were not analyzed per matrix per concentration level for each 12 hour period on each GC/MS system used to analyze VOCs and SVOCs use professional judgement to qualifty data. Data may be rejected (R).

Remarks:	No 135465	

VII. Initial & Contining Calibration (VOC, SVOC)

GC/MS instrument performance checks (BFB / DFTPP) Acceptable Y or N All compounds must have and RRF > 0.01, %RSD < 30, and %D < 25

VOC - Date of initial calibration:

VOC - Date(s) of continuing calibration: Was the 12 hour critieria met? Wor N 7/31/15@1802,8/31/15@1655 9/28/15@1103,9/28/15@1138,4/30/15@617

SVOC- Date of initial calibration:

SVOC - Date(s) of continuing calibration: Was the 12 hour critieria met? Y or N

(131/15@ 1655 9130/15@ 0617

Deviations:

Compound	Date	RRF	%RSD	%D	Samples Affected
				<u></u>	18

^{* %} Difference = ((RF_{CCV} - RF_{ICAL AVG})/RF_{ICAL AVG}) x 100. In instances where the bias of the CCV impacts validation qualifiers, review the RF values or amount reported to confirm that the % Difference or % Drift are reported with the correct negative or positive value.

- 1. If any compound has an intial or continuing RRF of < 0.01, qualify positive results as estimated (J)
- 2. If any compound has an intial or continuing RRF of < 0.01, qualify non-detects as unusable (R)
- 3. If any compound has a %RSD >30 or a %D >25, qualify positive results as estimated (J)
- 4. If any compound has a %RSD >40 or a %D >40, qualify non-detects as estimated (UJ)
- 5. If BFB or DFTPP mass assignment / ION abundance criteria are all associated data as unusable (R).
- 6. If samples were analyzed outside the 12 hour BFB or DFTPP performance check time period, qualify the affected sample data as estimated (J/UJ).
- 7. If separate calibration for water and soil were not performed, use professional judgement to evaluate the data. Data may be rejected (R).
- 8. If calibrations were not completed within the 12 hour criterion, qualifty all associated data as estimated (J/UJ). If the 12 hour criterion was grossly exceeded, reject all associated data (R).

Remarks:	Grace attached	_

Page 9 of 11 VIII. Initial & Continuing Calibration (Pesticides, PCBs)							
Linearity evaluation, are %RSD <20? (Y/N)							
Is the RPD between calibrat	tion factors <u><</u> 2	25? (Y/N)	/				
Are multicomponent calibrat	ion data prov	rided for each	n analysis date? (Y/N)				
Is the difference between co	lumns check	≤ 25%D? (Y	/N)				
Are 4, 4'- DDT and endrin be	reakdown (PE	EM) <u><</u> 20% a	nd combined breakdown ≤ 30% (Y/N)				
Deviations:							
Compound	%RSD	RRD	Samples Affected				
		X					
	,						
		<u> </u>					
* % Difference = ((RF _{CCV} - RF _{IC}	AL AVG)/FFICAL A	_{VG}) x 100. In i	nstances where the bias of the CCV impacts				
	/		ed to confirm that the % Difference or %				
Drift are reported with the corre	ct negative or i	positive value.					
Actions: 1. If %RSD criteria are not met, qualify positive results as estimated (J) and non-detects as estimated (UJ) 2. If RPD criteria are not met, qualify positive results as estimated (J) and non-detects as estimated (UJ) 3. If %D criteria is not met, qualify positive results as estimated (J) and non-detects as estimated (UJ) 4. If breadkwon criteria are not met, positive 4, 4'-DDT and endrin should be qualified as estimated (J). And non-detects should be rejected (R).							
Remarks:							
	-						

IX. Matrix Spike/Matrix Spike Duplicate Information

General MS/MSD Criteria: percent recovery (%R) relative percent difference (RPD)

VOC	SVOC	Pest	PCB
70-130	45-135	40-140	40-140
<30	<50	<50	<50

Project Sample(s) Spiked:	
---------------------------	--

Deviations:

Deviations.	- 1 0/ 5	1 0/ D	DDD	DDD	
	%R	%R	RPD	RPD	
Compound		Limits		Limits	Samples Affected
				_	
		- 1			
		-			
		ļ			
		1			
		1			
		1		1	
			 	 	
				<u> </u>	<u> </u>

- 1. If the spike recovery is above the upper control limit (UCL), qualify all positive values in the unspiked sample as estimated (J) and non-detects as estimated (UJ).
- 2. If the spike recovery is below the lower control limit (LCL), qualifty positive values as estimated (J). And non-detects as estimated (UJ).
- 3. If the spike recovery is <10%, qualify non-detect values as unusable (R)
- 4. If the RPD does not meet criteria, qualify positive values in the unspiked sample as estimated (J)
- 5. Use professional judgement to qualify additional samples in the analytical group based on MS/MSD results
- 6. Use professional judgement for qualification of data for unspiked compounds

Remarks:	collected	No	project	ms/ns D suples

X. Laboratory Control Sample Information

General	LCS	Criteria	a:
perce	ent re	covery	(%R)

VOC	SVOC	Pest	PCB
80-120	60-120	50-130	50-130

Laboratory LCS Ide	ntifications:

Deviations:

Compound	Date	%R	Samples Affected/Qualifiers Applied				
<u> </u>							
·							
	1						
							
							

Actions:

Action should be based on both the number of compounds outside the criterion and the magnitude of the exceedance.

- 1. If the LCS recovery is below limits but > one- half the lower limit, qualify valves as estimated (J/UJ).
- 2. If the LCS recovery is < one-half the lower limit, qualify all data for that analyte as unusable (R).
- 3. If the LCS recovery is greater than the upper limit, qualify positive valves for that analyte as estimated (J).
- 4. If more than half the compounds in this LCS are not within recovery criteria, then qualify associated detected compounds as estimated (J).

111

5. Use professional judgement for qualification of data for compounds with no LCS information

Remarks:	S66 attack					

Hold Time Summary

Sample Num	ber Sample Name	Method	Date Collected	Analysis Date	Date Extracted	Days to Analysis
180-47935-1	HD-MW-129-0/1-0	SW846 8260C	9/18/2015	9/28/2015		10
180-47935-2	HD-MW-131-0/1-0	SW846 8260 C	9/18/2015	9/28/2015		10
180-47935-3	HD-MW-132-0/1-0	SW846 8260C	9/18/2015	9/28/2015		10
180-47935-4	HD-MW-134-0/1-0	SW846 8260 C	9/18/2015	9/28/2015		10
180-47935-5	HD-MW-114-0/1-0	SW846 8260 C	9/18/2015	9/28/2015		10
180-47935-5	HD-MW-114-0/1-0	SW846 8260 C	9/18/2015	9/29/2015		11
180-47935-6	HD-MW-46-0/1-0	SW846 8260 C	9/18/2015	9/29/2015		11
180-47935-7	HD-QC4-0/1-2	SW846 8260 C	9/18/2015	9/28/2015		10
180-47935-1	HD-MW-129-0/1-0	SW846 8270D LL	9/18/2015	9/30/2015	9/25/2015	12
180-47935-2	HD-MW-131-0/1-0	SW846 8270D LL	9/18/2015	9/30/2015	9/25/2015	12
180-47935-3	HD-MW-132-0/1-0	SW846 8270D LL	9/18/2015	9/30/2015	9/25/2015	12
180-47935-4	HD-MW-134-0/1-0	SW846 8270D LL	9/18/2015	9/30/2015	9/25/2015	12

Theoret Vertication

Blank Detections

Sample ID

Sample

Analyte

Result M

Method Units

Qual

Sample ID	Sample	Analyte	Result	5x	10x	Method	Units	Qual
180-47935-5	HD-MW-114-0/1-0	1,1,1-Trichloroethane	3.4	17	34	SW846 8260C	ug/L	J
180-47935-2	HD-MW-131-0/1-0	1,1,2-Trichloroethane	1.6	8	16	SW846 8260C	ug/L	J
180-47935-2	HD-MW-131-0/1-0	1,1-Dichloroethane	4.9	24.5	49	SW846 8260C	ug/L	J
180-47935-3	HD-MW-132-0/1-0	1,1-Dichloroethane	12	60	120	SW846 8260C	ug/L	1
180-47935-6	HD-MW-46-0/1-0	1,1-Dichloroethane	4.2	21	42	SW846 8260C	ug/L	1
180-47935-2	HD-MW-131-0/1-0	1,1-Dichloroethene	1.4	7	14	SW846 8260C	ug/L	1
180-47935-3	HD-MW-132-0/1-0	1,1-Dichloroethene	18	90	180	SW846 8260C	ug/L	1
180-47935-6	HD-MW-46-0/1-0	1,1-Dichloroethene	4.5	22.5	45	SW846 8260C	ug/L	J
180-47935-5	HD-MW-114-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-1	HD-MW-129-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-1	HD-MW-129-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-2	HD-MW-131-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-2	HD-MW-131-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-3	HD-MW-132-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-3	HD-MW-132-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-4	HD-MW-134-0/1-0	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-7	HD-QC4-0/1-2	2-Hexanone				SW846 8260C	ug/L	^c
180-47935-5	HD-MW-114-0/1-0	Bromomethane				SW846 8260C	ug/L	^c
180-47935-6	HD-MW-46-0/1-0	Bromomethane				SW846 8260C	ug/L	^c
180-47935-2	HD-MW-131-0/1-0	Chloroform	12	60	120	SW846 8260C	ug/L	1
180-47935-4	HD-MW-134-0/1-0	Chloroform	0.19	0.95	1.9	SW846 8260C	ug/L	J
180-47935-5	HD-MW-114-0/1-0	cis-1,2-Dichloroethene	1500	7500	15000	SW846 8260C	ug/L	E
180-47935-3	HD-MW-132-0/1-0	cis-1,2-Dichloroethene	390	1950	3900	SW846 8260C	ug/L	E
180-47935-1	HD-MW-129-0/1-0	cis-1,2-Dichloroethene	130	650	1300	SW846 8260C	ug/L	J
180-47935-2	HD-MW-131-0/1-0	Tetrachloroethene	6.6	33	66	SW846 8260C	ug/L	J
180-47935-3	HD-MW-132-0/1-0	Tetrachloroethene	1.5	7.5	15	SW846 8260C	ug/L	J
180-47935-5	HD-MW-114-0/1-0	trans-1,2- Dichloroethene	8.2	41	82	SW846 8260C	ug/L	J
180-47935-4	HD-MW-134-0/1-0	trans-1,2- Dichloroethene	0.2	1	2	SW846 8260C	ug/L	J
180-47935-5	HD-MW-114-0/1-0	Trichloroethen e	1300	6500	13000	SW846 8260C	ug/L	E
180-47935-1	HD-MW-129-0/1-0	Trichloroethene	2900	14500	29000	SW846 8260C	ug/L	Е
180-47935-2	HD-MW-131-0/1-0	Trichloroethene	540	2700	5400	SW846 8260C	ug/L	Е
180-47935-3	HD-MW-132-0/1-0	Trichloroethene	390	1950	3900	SW846 8260C	ug/L	E

Thursday, November 65, 2015 Page 1 of 1

Initial & Continuing Calibration

Compound	Date	RRF	%RSD	%D	Samples Affected	
Isobutyl alcohol	7/31/2015	0.0074			NA	7
1,4-Dioxane	7/31/2015	0.0028			R-5,6	-code -
Isobutyl alcohol	9/28/2015 11:03	0.0077			NA	٦,
1,4-Dioxane	9/28/2015 11:03	0.0028			R-1,2,3,4,5,7	- codo -
Isobutyl alcohol	9/29/2015 11:39	0.0077			NA	7
1,4-Dioxane	9/29/2015 11:39	0.0029			R-5,6	- code -
						_
						_
						_

Compound Date			Samples Affected			
2-Hexanone	9/29/2015	128	UJ-5,6		7 ,	11
Carbon disulfide	9/29/2015	79	UJ- 5 ,6		5 code	u
1,1-Dichloroethene	9/28/2015	76	J-3,4 UJ-1,2,5		3	